TABLEAUX D'AVANCEMENT ET BILAN DE MATIERE

Exercices Collection Parisi - Belin (2006) - Correction

Formation d'un précipité

1. Equation chimique correspondante $Fe^{2+} + 2 HO^{-} \rightarrow Fe(OH)_{2}$

		Fe ²⁺ +	2 HO →	Fe(OH) ₂	
El (mol)	x = 0	ni(Fe ²⁺)	ni(HO¯)	0	
Eint (mol)	x	ni(Fe ²⁺) - x	ni(HO⁻) - 2x	х	
EF (mol)	X _{max}	ni(Fe ²⁺) - x _{max}	ni(HO ⁻) - 2x _{max}	X _{max}	

2. a. La réaction s'arrête lorsqu'au moins un des 2 réactifs est totalement consommé. A l'état final, on a donc :

On en déduit $x_{max} = 4,0.10^{-2}$ mol. L'ion hydroxyde est le réactif limitant.

Quantité de matière d'ions HO à l'état final :

$$n_f(HO^-) = 0.0 \text{ mol (réactif limitant)}$$

Quantité de matière d'ions Fe²⁺ à l'état final :

$$n_f(Fe^{2+}) = n_i(Fe^{2+}) - x_{max}$$

$$n_f(Fe^{2+}) = 5,0.10^{-2} - 4,0.10^{-2}$$

$$n_f(Fe^{2+}) = 1,0.10^{-2} \text{ mol}$$

Quantité de matière de l'hydroxyde de fer à l'état final :

$$n_f(Fe(OH)_2) = x_{max}$$

 $n_f(Fe(OH)_2) = 4,0.10^{-2} \text{ mol}$

b. Masse molaire de l'hydroxyde de fer :

$$M(Fe(OH)_2) = M(Fe) + 2*M(O) + 2*M(H)$$

 $M(Fe(OH)_2) = 55.8 + 2*16.0 + 2*1.00$
 $M(Fe(OH)_2) = 89.8 \text{ g.mol}^{-1}$

Masse de précipité formée :

$$\begin{split} n_{f}(\text{Fe(OH)}_{2}) &= \frac{\text{m(Fe(OH)}_{2})}{\text{M(Fe(OH)}_{2})} \\ m_{f}(\text{Fe(OH)}_{2}) &= n_{f}(\text{Fe(OH)}_{2}) \times \text{M(Fe(OH)}_{2}) \\ m_{f}(\text{Fe(OH)}_{2}) &= 4,0.10^{-2} \times 89,8 \\ m_{f}(\text{Fe(OH)}_{2}) &= 3,6 \text{ g} \end{split}$$

Formation de la rouille

- 1. Equation chimique correspondante $4 \text{ Fe} + 3 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{O}_3$
- 2. Quantité de matière de fer initiale :

$$n_{i}Fe = \frac{m_{i}(Fe)}{M(Fe)}$$

$$n_{i}Fe = \frac{25,0}{55,8}$$

$$n_{i}(Fe) = 0,448 \text{ mol}$$

3.

		4 Fe +	3 O ₂ →	2 Fe ₂ O ₃	
El (mol)	x = 0	0,448	ni(O ₂)	0	
Eint (mol)	x	0,448 - 4x	ni(O ₂) - 3x	2x	
EF (mol) x _{max} 0,4		0,448 - 4x _{max}	ni(O ₂) - 3x _{max}	2x _{max}	

La réaction s'arrête lorsque le fer est totalement consommé. Le fer est donc le réactif limitant. On en déduit :

$$\begin{aligned} 0,448 - 4x_{max} &= 0 \\ 4x_{max} &= 0,448 \\ x_{max} &= 0,448 \ / \ 4 \\ x_{max} &= 0,112 \ mol \end{aligned}$$

4. Quantité de matière de fer à l'état final :

$$n_f(Fe) = 0,000 \text{ mol}$$
 (réactif limitant)

Quantité de matière de rouille :

$$\begin{split} &n_f(Fe_2O_3) = 2x_{max} \\ &n_f(Fe_2O_3) = 2*0,112 \\ &n_f(Fe_2O_3) = 0,224 \text{ mol} \end{split}$$

On ne peut pas calculer la quantité de matière de dioxygène à l'état final.

5. Si on travaille avec le volume minimal de dioxygène, il ne restera plus de fer ni de dioxygène à l'état final. On se sera donc placé dans les proportions stoechiométriques. D'après le tableau d'avancement, on aura alors :

$$\begin{split} n_i(O_2) - 3x_{max} &= 0 \\ n_i(O_2) &= 3x_{max} \\ n_i(O_2) &= 3*0,112 \\ n_i(O_2) &= 0,336 \text{ mol} \end{split}$$

Volume minimal de dioxygène :

$$n_{i}(O_{2}) = \frac{V(O_{2})}{V_{m}}$$

$$V(O_{2}) = n_{i}(O_{2}) \times V_{m}$$

$$V(O_{2}) = 0.336 \times 24.0$$

$$V(O_{2}) = 8.06 L$$

6. Masse de rouille m_f(Fe₂O₃) obtenue.

$$n_{f}(Fe_{2}O_{3}) = \frac{m_{f}(Fe_{2}O_{3})}{M(Fe_{2}O_{3})}$$

$$m_{f}(Fe_{2}O_{3}) = n_{f}(Fe_{2}O_{3}) \times M(Fe_{2}O_{3})$$

$$m_{f}(Fe_{2}O_{3}) = 0.224 \times (2 \times 55.8 + 3 \times 16.0)$$

$$m_{f}(Fe_{2}O_{3}) = 35.8 \text{ g}$$

Feux de Bengale

$$2 \ KClO_{3 \ (S)} + S_{(S)} + 3 \ C_{(S)} \rightarrow K_2S_{(S)} + 3 \ CO_{2 \ (g)} + Cl_{2 \ (g)}$$

1. Quantité de matière initiale de chlorate de potassium :

$$n_{i}(KClO_{3}) = \frac{m(KClO_{3})}{M(KClO_{3})}$$

$$n_{i}(KClO_{3}) = \frac{122,6}{39,1+35,5+3\times16,0}$$

$$n_{i}(KClO_{3}) = 1,00 \text{ mol}$$

Quantité de matière initiale de soufre :

$$n_{i}(S) = \frac{m(S)}{M(S)}$$

$$n_{i}(S) = \frac{16}{32,1}$$

$$n_{i}(S) = 0.50 \text{ mol}$$

Quantité de matière initiale de carbone :

$$n_{i}(C) = \frac{m(C)}{M(C)}$$
 $n_{i}(C) = \frac{18}{12,0}$
 $n_{i}(S) = 1,5 \text{ mol}$

2.

		2 KCIO ₃ +	S +	3 C →	K ₂ S +	3 CO ₂ +	Cl ₂
El (mol)	x = 0	1,00	0,50	1,5	0	0	0
Eint (mol)	x	1,00 - 2x	0,50 - x	1,5 - 3x	х	3x	х
EF (mol)	X _{max}	1,00 - 2x _{max}	0,50 - x _{max}	1,5 - 3x _{max}	X _{max}	3x _{max}	X _{max}

Si le mélange est stoechiométrique, alors on doit avoir :

La condition est bien vérifiée donc le mélange est stoechiométrique.

3. Quantité de matière de K₂S:

$$n_f(K_2S) = x_{max}$$

 $n_f(K_2S) = 0,50 \text{ mol}$

Quantité de matière de CO₂:

$$n_f(CO_2) = 3x_{max}$$

 $n_f(CO_2) = 3*0,50$
 $n_f(CO_2) = 1,5$ mol

Quantité de matière de Cl₂ :

$$n_f(Cl_2) = x_{max}$$

$$n_f(Cl_2) = 0.50 \text{ mol}$$

4. Volume occupé par le dioxyde de carbone :

$$nf(CO2) = \frac{V(CO2)}{V_m}$$

$$V(CO2) = nf(CO2) \times V_m$$

$$V(CO2) = 1.5 \times 24.0$$

$$V(CO2) = 36 L$$

Volume occupé par le dichlore :

$$nf(Cl_{2}) = \frac{V(Cl_{2})}{V_{m}}$$

$$V(Cl_{2}) = nf(Cl_{2}) \times V_{m}$$

$$V(Cl_{2}) = 0.50 \times 24.0$$

$$V(Cl_{2}) = 12 L$$

Volume total occupé par les gaz produits :

$$V = V(CO_2) + V(Cl_2)$$

 $V = 36 + 12$
 $V(CO_2) = 48 L$

